RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription.

نویسندگان

  • Xuhui Huang
  • Dong Wang
  • Dahlia R Weiss
  • David A Bushnell
  • Roger D Kornberg
  • Michael Levitt
چکیده

A structurally conserved element, the trigger loop, has been suggested to play a key role in substrate selection and catalysis of RNA polymerase II (pol II) transcription elongation. Recently resolved X-ray structures showed that the trigger loop forms direct interactions with the beta-phosphate and base of the matched nucleotide triphosphate (NTP) through residues His1085 and Leu1081, respectively. In order to understand the role of these two critical residues in stabilizing active site conformation in the dynamic complex, we performed all-atom molecular dynamics simulations of the wild-type pol II elongation complex and its mutants in explicit solvent. In the wild-type complex, we found that the trigger loop is stabilized in the "closed" conformation, and His1085 forms a stable interaction with the NTP. Simulations of point mutations of His1085 are shown to affect this interaction; simulations of alternative protonation states, which are inaccessible through experiment, indicate that only the protonated form is able to stabilize the His1085-NTP interaction. Another trigger loop residue, Leu1081, stabilizes the incoming nucleotide position through interaction with the nucleotide base. Our simulations of this Leu mutant suggest a three-component mechanism for correctly positioning the incoming NTP in which (i) hydrophobic contact through Leu1081, (ii) base stacking, and (iii) base pairing work together to minimize the motion of the incoming NTP base. These results complement experimental observations and provide insight into the role of the trigger loop on transcription fidelity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis

New structures of RNA polymerase II (pol II) transcribing complexes reveal a likely key to transcription. The trigger loop swings beneath a correct nucleoside triphosphate (NTP) in the nucleotide addition site, closing off the active center and forming an extensive network of interactions with the NTP base, sugar, phosphates, and additional pol II residues. A histidine side chain in the trigger...

متن کامل

Structural basis of initial RNA polymerase II transcription

During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a ...

متن کامل

A movie of the RNA polymerase nucleotide addition cycle.

During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of ...

متن کامل

Mechanism of RNA polymerase II stalling by DNA alkylation

Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and ...

متن کامل

Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.

During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 36  شماره 

صفحات  -

تاریخ انتشار 2010